Genomically-Enhanced EPDs: the Basics

SCOTT P. GREINER, PH.D. PROFESSOR, EXTENSION ANIMAL SCIENTIST DEPARTMENT OF ANIMAL AND POULTRY SCIENCES VIRGINIA TECH SGREINER@VT.EDU 540.231.9159 VIRGINIA TECH.

Bull Selection-Job #1

Most (all!) genetic progress is made through sire selection.

EPD = Expected Progeny Differences

- Estimate genetic value of an animal as parent
- Prediction of how an animal's progeny will perform compared to other animals in the same breed
- EPDs available for many important traits
- Calculated and made available through breed associations

46 N	PI AC	CLIAN	A 9G7 Calved: 1/	ET /24/19	+*	*1946622	27 260 Litter D	Tattoo	: 9G7	
FID NO ·	8400032	0817211	; viigiilla leul 13	rounuation,	unau Junies	, wanayer, s	SOU LIUUII HE	aves naii, di	acksburg, va,	,040-007-7200
Production EPDs Maternal EPDs Carcass EPDs										
	CED	BW	WW	YW	DOC	CEM	Milk	MB	RE	FAT
EPD	+9	5	+49	+89	+2	+15	+27	+.32	+.32	+.016
ACC	.33	.48	.42	.38	.35	.30	.31	.35	.35	.31
					Individual	Performanc	;e			
	BW	WW	Test YW	ADG	End Wt.	Frame	Scrotal	U%IMF	RE	FAT
Perf.	94	642	1066	3.95	1130	5.2	41	3.12	12.1	0.22
Ratio	ET	ET	95	120				81	101	105
JINDRA AC	CLAIM (AMF-C	AF-DDF-M1F-NHF-I Yw	ohf-osf-rdf] Millk		JINDR	A 3RD DIM	ENSION (D2	F-DDF-M1F-OHF-OS	F]	\$VALUES \$M +47
EPD +. ACC .9	9 +72 6 .95	2 +14 .91	4 +31 .58		JINDR	A BLACKBI	RD LASSY	1111		\$W +58 \$B +118
VPI SHADO)E 1Y28				SAV BI	SMARCK 5	5682 jamf-caf	02F-DDF-M1F-NHF-	-OHF-OSF-RDF]	
EPD +.	N WW 3 +53 AGE: 7	94 8 +94 WW	MILK +30 R: 2/106		SHADO	SAF 59 <u>)</u> E 1062 01	98 Bando F Foxcros	5175 [cac-ai SS [caf]	MF-D2F-DDF-OSF]	

VIRGINIA TECH. How are EPDs different than actual performance records?

- Actual Performance Records what did they weigh or measure? (Birth Weights, Weaning Weights, Feedlot ADG, Carcass Traits, etc.)
 - Actual performance records measure an animals performance
 - Influenced by the animals genetics
 - Influenced by the environment (feeding program/nutrition, season of the year, geographical location, etc.)
 - so only a portion of an animals own actual performance is due to genetics (genetics are passed to offspring)
- EPDs
 - Estimate of genetics only only reflect what will be passed to offspring
 - Based on actual records but calculations remove the "non-genetic" parts of actual records

Calculating EPDs – how do we get the numbers?

- Performance Records (actual measurements)
 - Animal's own performance
 - Sire and Dam
 - Other relatives (siblings, half-sibs, cousins)
 - Progeny
- Pedigree relationships (close and distant relatives)
- Account for non-genetic factors
 - Management differences
 - Geographic location
- Genetic relationships between traits

- Infrequent occurrence
- Decisions not immediately visible
- Young/unproven sires- accuracy

Possible Change

- EPDs are estimates of true value
- EPD +/- possible change gives an idea of how EPD could change
- Bull 1 WW 45 Acc 0.50
 - 68% of time true progeny difference between 37 and 53
 - 95% of time true progeny difference between 29 and 61
 - 99% of time true progeny difference between 11 and 69

Accuracy and Possible Change										
Ассигасу	CED	BW	ww	YW						
.05	9.7	2.55	14.9	24.3						
.10	9.2	2.42	14.1	23.0						
.15	8.7	2.28	13.3	21.7						
.20	8.2	2.15	12.6	20.5						
.25	7.7	2.02	11.8	19.2						
.30	7.2	1.88	11.0	17.9						
.35	6.7	1.75	10.2	16.6						
.40	6.2	1.61	9.4	15.4						
.45	5.6	1.48	8.6	14.1						
.50	5.1	1.34	7.9	12.8						
.55	4.6	1.21	7.1	11.5						
.60	4.1	1.08	6.3	10.2						
.65	3.6	.94	5.5	9.0						
.70	3.1	.81	4.7	7.7						
.75	2.6	.67	3.9	6.4						
.80	2.1	.54	3.1	5.1						
.85	1.5	.40	2.4	3.8						
.90	1.0	.27	1.6	2.6						
.95	.5	.13	.8	1.3						

•••

 \sim

Pct	CED	BW	ww	YW
1%	+17	-3.1	+81	+143
2%	+16	-2.6	+78	+138
3%	+15	-2.2	+76	+133
4%	+14	-2.0	+74	+131
5%	+14	-1.8	+73	+128
10%	+12	-1.0	+68	+121
15%	+11	5	+65	+115
20%	+11	2	+63	+111
25%	+10	+.1	+61	+108
30%	+9	+.4	+59	+104
35%	+9	+.6	+57	+101
40%	+8	+.9	+56	+99
45%	+7	+1.1	+54	+96
50%	+7	+1.3	+53	+93
55%	+6	+1.5	+51	+90
60%	+5	+1.7	+50	+87
65%	+5	+2.0	+48	+84
70%	+4	+2.2	+46	+81
75%	+3	+2.5	+44	+78
80%	+2	+2.7	+42	+74
85%	+1	+3.1	+39	+69
90%	+0	+3.5	+35	+62
95%	-2	+4.2	+28	+49

$\nabla 77$	
VIRGINIA TECH.	Possible Change

• Bull 1	WW 53	Acc 0.10
• Bull 2	WW 53	Acc 0.50
• Bull 3	WW 53	Acc 0.90

Possible change

Ассигасу	CED	BW	ww	YW
.50	5.1	1.34	7.9	12.8
.90	1.0	.27	1.6	2.6

www.angus.org

What are Genomic Enhanced VIRGINIA ТЕСН. Estimated Breeding Values (GEBV)?

VIRGINIA TECH. How are GEBVs Derived?

Reference population of animals with genotypes and phenotypes

Use reference population to find SNPs of interest and associations with variation in performance

 $\Delta G = \frac{accuracy * intensity * genetic variation}{generation interval}$

- Accuracy
 - Correlation between the estimated and true breeding value
- Intensity
 - Superiority of the selected animals compared to flock average
- Genetic variation
 - Variation in breeding values within population
- Generation Interval
 - Average age of parents when offspring are born

VIRGINIA TECH. Accuracy: Parentage Verification

- Pedigree serves as the foundation for EBV calculation
- Both sire and dam relevant

VIRGINIA TECH. Accuracy: Parentage Verification

- Pedigree serves as the foundation for EPD calculation
- Both sire and dam relevant
- How do parentage errors occur?
 - Al vs. Natural service identification
 - Al semen ID
 - Multi-sire breeding groups
 - Record-keeping errors

VIRGINIA TECH. Accuracy: Pedigree Lineage

- Genomics allows for computation of the specific relationship, or DNA inheritance, between an individual animal and animals in its pedigree
- Historically, relationships obtained through pedigrees are average (or expected) values

- Calf received ½ of its DNA from sire, ½ from dam
- Therefore, ¼ from paternal grandsire, ¼ from paternal granddam, etc. <u>on</u> <u>average</u>

VIRGINIA TECH. Angus Example

- Comparing 2 full sibling calves sired by VAR Reserve 1111
- Pedigree relationships indicate these calves have the same BW EPD
 - Calf A has BW EPD of 1.6
 - Calf B has BW EPD of 2.5
- Tracking pedigree and genomic relationships with male ancestors

Schearbrook Shoshone AAA #7011424 [CAF-D2F-XF] VDAR Shoshone 548 AAA #9389965 VDAR Polly 308 AAA 8720142 AAA #9958634 [OSF] AAR New Trend Candolier Forever 376 AAA #7501542 Donna AAR74 AAA 8324606 Donna 244 GDAR AAA 7473425 Boyd New Day 8005 AAA #+13050780 [AMF-CAF-XF] AAA #10776479 [AMF-CAF-XF] N Bar Emulation EXT Leachman Right Time AAA #+11750711 [D2F-M1F-OSF] Leachman Erica 0025 AAA 11382472 SVF Forever Lady 57D AAA 12133159 Skarship Saratoga AAA #+10351162 [OHF] SVF Forever Lady 1128 AAA +11699928 Forever Lady 163 GDAR AAA #9995297 B/R New Day 454 AAA #14675445 [DDC-AMF-XF] VDAR New Trend 315 AAA #11105489 [AMF-CAF-XF] B/R New Design 036 AAA #11418151 [DDC-AMF-XF] B/R Blackcap Empress 76 AAA 10970296 AAA #11928774 [DDC] B/R New Design 323 VDAR Pine Drive 251 AAA 10960004 B/R Ruby of Tiffany 155 AAA 11563271 Tiffany BR AAA 10099738 B/R Ruby 1224 AAA 13879911 [DDC] Traveler 124 GDAR AAA #9995349 SVF Gdar 216 LTD AAA #+12309326 GDAR Forever Lady 718 AAA +10989615 HF Ruby 036-951 AAA +13324497 B/R New Design 036 AAA #11418151 [DDC-AMF-XF] B/R Ruby 624 AAA 12569809 B/R Ruby 492 AAA 12103654 AAA +16916944 [AMF-CAF-XF] VAR Reserve 1111

SIRE

1/64 Expected Relationship of Schearbrook Shoshone to calf

$\sqrt{77}$	Ancestor	BW FPD	Pedigree Relationship	Difference in Genomic Relationships	Deviation of Genomic from Pedigree
V L	G A R Grid Maker	5.5	0.0625	0.0297	0.48
VIRGINIA TECH	Ideal 1418 of 8103 4286	5	0.0156	-0.0161	1.03
	Rito 2100 G D A R	4.6	0.0156	0.0332	2.13
	Schearbrook Shoshone	4.3	0.0508	0.0110	0.22
	V D A R New Trend 315	3.5	0.0859	0.0367	0.43
	B/R New Frontier 095	2.9	0.2500	-0.0093	0.04
	G D A R Traveler 044	2.4	0.0313	-0.0206	0.66
	B/R Ruby 1224	2.3	0.1250	0.0517	0.41
	Boyd New Day 8005	2.1	0.1250	0.0150	0.12
	Altune of Conanga 6104	2	0.0625	-0.0059	0.09
	B/R New Design 036	1.5	0.1875	0.0326	0.17
	P S Power Play	1.4	0.0527	-0.0053	0.10
	N Bar Emulation EXT	1.4	0.0156	0.0055	0.35
	G A R Precision 1680	1.2	0.1563	-0.0361	0.23
	Riverbend Blackbird 4301	1.1	0.1250	-0.0047	0.04
	Connealy Dateline	0.7	0.1563	-0.0457	0.29
	V A R Reserve 1111	0.7	0.5000	0.0217	0.04
	S A F Fame	0.6	0.0156	-0.0016	0.10
	S A F Focus of E R	0	0.0313	-0.0152	0.48
	Q A S Traveler 23-4	-0.9	0.0469	-0.0244	0.52
	Tehama Bando 155	-1.5	0.0938	-0.0342	0.36
	Band 234 of Ideal 3163	-1.6	0.0469	-0.0230	0.49

		Pedigree	Difference in Genomic	Deviation of Genomic from
Ancestor	BW EPD	Relationship	Relationships	Pedigree
G A R Grid Maker	5.5	0.0625	0.0297	0.48
Ideal 1418 of 8103 4286	5	0.0156	-0.0161	1.03
Rito 2100 G D A R	4.6	0.0156	0.0332	2.13
Schearbrook Shoshone	4.3	0.0508	0.0110	0.22
V D A R New Trend 315	3.5	0.0859	0.0367	0.43
B/R New Frontier 095	2.9	0.2500	-0.0093	0.04
G D A R Traveler 044	2.4	0.0313	-0.0206	0.66
B/R Ruby 1224	2.3	0.1250	0.0517	0.41
Boyd New Day 8005	2.1	0.1250	0.0150	0.12
Altune of Conanga 6104	2	0.0625	-0.0059	0.09
Average		0.08	.01	0.15

Calf with higher BW EPD is 15% **MORE** related to the **higher** BW EPD Ancestors

			Difference in	Deviation of
		Pedigree	Genomic	Genomic from
Ancestor	BW EPD	Relationship	Relationships	Pedigree
N Bar Emulation EXT	1.4	0.0156	0.0055	0.35
G A R Precision 1680	1.2	0.1563	-0.0361	0.23
Riverbend Blackbird 4301	1.1	0.1250	-0.0047	0.04
Connealy Dateline	0.7	0.1563	-0.0457	0.29
V A R Reserve 1111	0.7	0.5000	0.0217	0.04
S A F Fame	0.6	0.0156	-0.0016	0.10
S A F Focus of E R	0	0.0313	-0.0152	0.48
Q A S Traveler 23-4	-0.9	0.0469	-0.0244	0.52
Tehama Bando 155	-1.5	0.0938	-0.0342	0.36
Band 234 of Ideal 3163	-1.6	0.0469	-0.0230	0.49
Average		0.12	02	13

Calf with higher BW EPD is 13% **LESS** related to the **lower** BW EPD Ancestors

Accuracy: Traits of Economic Importance

- Traits expressed in one sex
 - Heifer pregnancy
 - Stayability
- Traits measured later in life
 - Longevity
 - Stayability
- Expensive or difficult traits to measure
 - Feed efficiency
 - End product- tenderness, eating quality
- Lowly heritable traits
 - Reproduction
 - Fitness
 - Disease/health

VIRGINIA TECH. Genomics: Causative Genes

- Polled/Horned
- Coat Color
- Genetic Defects

Value of genomics- ET beef bull example

LWHF JOURNEY 02F

PB ANGUS Calved: 9/2/18 19454462 Tattoo: 02F Consigned by Little Windy Hill Farms; Doug Hughes; 6916 Peppers Ferry Road; Max Meadows, VA; 276-620-4271 EID NO.: 840003203594650

		P	roduction EP	Ds		Matern	ial EPDs		Carcass EP	Ds	
	CED	BW	ww	YW	DOC	CEM	Milk	MB	RE	FAT	
EPD	l+10	l+.8	I+56	I+96	I+22	I+9	I+26	l+.56	I+.83	l+.005	
ACC	.05	.05	.05	.05	.05	.05	.05	.05	.05	.05	
		Individual Performance									
	BW	WW	Test YW	ADG	End Wt.	Frame	Scrotal	U%IMF	RE	FAT	
Perf.	73	687	1108	3.74	1585	6.1	36				
Ratio	ET	ET	103	100							
WR JOURN	EY-1X74 (A)	NF-CAF-D2F-DDF-I	M1F-NHF-OHF-OSF]		B/R FL	JTURE DIR	ECTION 42	68 (AMF-CAF-DD)F-M1F-NHF-OHF]	\$VALUES	
EPD3 ACC .9(3 + 51 6 .95	+86	6 +28 3 .83		2 BAR	5050 NEV	V DESIGN 7	7831 amf-nhf	1	\$W +63 \$B +142	
KLR HENRI	ETTA PRIDE	E 0293			SAV B	SMARCK	5682 jamf-caf	-D2F-DDF-M1F-NHF	-OHF-OSF-RDF]		
EPD +1.	8 +60 AGE: 8) +10 WV	MILK 5 +24 VR: 3/97		SITZ H	CONN Enrietta	EALY ONW Pride 643	ARD jamf-caf- 3T	DDF-M1F-NHF-OSF]		

Selling 2/3 semen interest and full possession

- Both bulls top ~25% breed for CED EPD
- Lot 6- Acc .05 = CE EPD range +1 to +19
- Lot 46- Acc .33 = CE EPD range +4 to +14 (good as we will do on Acc with a young, unproven bull)

6 VPI ACCLIAM 9G7 ET PB ANGUS Calved: 1/24/19 +*19466227

GE-EPD

PB ANGUS Calved: 1/24/19 +*19466227 Tattoo: 9G7 Consigned by Virginia Tech Beef Center; Virginia Tech Foundation; Chad Joines, Manager; 3360 Litton Reaves Hall; Blacksburg, VA; 540-557-7263 EID NO.: 840003208172113

		PI	roduction EPI	Ds		Matern	al EPDs		Carcass EP	Ds
	CED	BW	WW	YW	DOC	CEM	Milk	MB	RE	FAT
EPD	+9	5	+49	+89	+2	+15	+27	+.32	+.32	+.016
ACC	.33	.48	.42	.38	.35	.30	.31	.35	.35	.31
					Individual	Performance	ce			
	BW	WW	Test YW	ADG	End Wt.	Frame	Scrotal	U%IMF	RE	FAT
Perf.	94	642	1066	3.95	1130	5.2	41	3.12	12.1	0.22
Ratio	ET	ET	95	120				81	101	105
					JINDR	A 3RD DIM	IENSION (D2	F-DDF-M1F-OHF-OS	F	\$VALUES
NUTA AU			Unr-Uar-hurj			-				\$M +47
DD .	0 .70									SW +58
ru +.	9 +72	+14	4 +31	_		A RI ACKRI		1111		110
.cc .9	6 .95	.91	.58		UNDI					SB +118
PI SHADO)E 1Y28				SAV B	SMARCK 8	5682 (AMF-CAF	-D2F-DDF-M1F-NHF	-OHF-OSF-RDF]	
В	N WW	YW	MILK			-				
PD +.	3 +53	+94	4 +30			SAF 5	98 BANDO	5175 [CAC-A	MF-D2F-DDF-OSF]	
	AGE: 7	WW	/R: 2/106	5	SHAD	<u>)</u> E 1062 0	F FOXCRO	SS [caf]		

VIRGINIA TECH. Misconceptions About Genomics

- Reduces need for collecting phenotypes
 - Phenotypes necessary for association with SNPs
 - Need for even more phenotypes!
 - Lifetime performance records remain important
- Genotyping improves EPD
 - Estimate of genetic merit may increase or decrease
- Only genotype best animals
 - Advantages of genomics best realized when large numbers genotyped and have phenotypes
- Need for genotyping will decline after reference population is established
 - Need continue over time to maintain closeness of genetic relationships (further "away" from relatives decreases value of genomic information)

VIRGINIA TECH. Examples: Benefits of Genomics

- Improved accuracy of EPD estimate in young animals
- Differentiating full sibs or ET calves
- Keep/cull decisions on bull calves earlier in life
- Animals with issues/challenges to their data or contemporary group structure

Influence of Information on EPDs and Accuracy Yearling Angus Bull- pedigree + own CE, BW, WW, YW (lots of valid data behind bull)

CED EPD	BW EPD	WW EPD	YW EPD	Milk EPD
+11	+0.3	+71	+113	+34
0.28	0.36	0.28	0.27	0.15

VIRGINIA TECH.

Influence of Information on EPDs and Accuracy Yearling Angus Bull- pedigree + own CE, BW, WW, YW (lots of valid data behind bull)

	CED	BW	WW	YW	Milk
	EPD	EPD	EPD	EPD	EPD
			. 74	. 4 4 2	. 2.4
	+11	+0.3	+/1	+113	+34
	0.28	0.36	0.28	0.27	0.15
+ genomics	+8	+0.9	+73	+118	+35
	0.35	0.42	0.32	0.35	0.18

Influence of Information on EPDs and Accuracy Yearling SimAngus Bull- pedigree + own CE, BW, WW, YW (smaller amount of data)

CED EPD	BW EPD	WW EPD	YW EPD	Milk EPD
+10.2	+0.6	+61	+98	+26
0.11	0.12	0.10	0.10	0.10

VIRGINIATECH. Influence of Information on EPDs and Accuracy Yearling SimAngus Bull- pedigree + own CE, BW, WW, YW (smaller amount of data)

	CED	BW	WW	YW	Milk
	EPD	EPD	EPD	EPD	EPD
	+10.2	+0.6	+61	+98	+26
	0.11	0.12	0.10	0.10	0.10
+ genomics	+9.5	+1.2	+64	+106	+24
	0.20	0.30	0.23	0.26	0.15

VIRGINIA TECH.

Top Pct	CED	BW	WW	YW
1%	15	-2.9	71	124
2%	14	-2.2	68	.19
3%	14	-1.9	66	116
4%	13	-1.6	65	114
5%	13	-1.3	64	.12
10%	11	0.6	60	106
15%	10	-0.1	57	102
20%	10	0.3	55	99
25%	9	J.6	53	96
30%	8	0.9	52	74
35%	8	1.1	51	91
40%	7	1.7	49	89
45%	7	1.6	48	87
50%	6	1.8	47	85
55%	5	2	45	83
60%	5	2.2	44	81
65%	4	2.5	43	79
70%	3		41	76
75%	3	3	40	73
80%	2	3.2	38	70
85%	1	3.6	35	66
90%	0	4	32	61
95%	-3	4.7	27	51

Accuracy 0.05-0.10

Accuracy 0.29-0.35

Accuracies >0.90

Value of Genomics- Beef

Table 1. Progeny equivalents (PE) – Carcass trait PE equate to actual carcass harvest data not ultrasound scan equivalents.

Trait	PE	Trait	PE
Calving Ease Direct	26	Heifer Pregnancy	17
Birth Weight	23	Calving Ease Maternal	20
Weaning Weight	27	Milk	36
Yearling Weight	23	Mature Weight	15
Dry Matter Intake	12	Mature Height	9
Yearling Height	17	Carcass Weight	15
Scrotal Circumference	15	Carcass Marbling	11
Docility	12	Carcass Ribeye	17
Claw Angle	10	Carcass Fat	14
Foot Angle	10		

Bull Selection-Job #1

Most (all!) genetic progress is made through sire selection. GENOMICS DOES NOT CHANGE HOW WE USE EPDs- JUST ENHANCES OUR CONFIDENCE IN THE VALUES!

- Have a plan! Concentrate on traits which pay the bills! (capitalize on strengths, improve weaknesses)
- Do your homework! (before looking at the bulls or attending sale)
- Bull purchase is an investment!

VIRGINIA TECH. Commercial Herd Genomic Test

- Use same technology as seedstock genomic tests
- Applicable to commercial crossbred heifers and feeder steers

- Genomic profile designed for crossbred commercial cattle
 - Results reported as Igenity Scores (1-10)
- Maternal: Birth weight, calving ease direct, calving ease maternal, stayability, heifer pregnancy, docility, and milk
- Performance: Residual feed intake, average daily gain, weaning weight, and yearling weight
- Carcass: Tenderness, marbling, ribeye area, fat thickness, and hot carcass weight
- Parentage
- Cost \$29

VIRGINIA TECH. GeneMax Advantage

- Genomic profile designed for commercial cattle >75% Angus
 - Results- economic index scores, individual genomic trait scores
- Cow Advantage Predicts differences in profitability from heifer development, pregnancy and calving, to the sale of weaned progeny, Calving Ease Total Maternal, Weaning Weight, Milk, Heifer Pregnancy, Mature Weight
- Feeder Advantage Predicts differences in net return of feeder calf progeny due to growth, feed efficiency and CAB carcass merit, Gain, Carcass Weight, Marbling, Ribeye Area, Fat
- Total Advantage Predicts differences in profitability from genetic merit across all economically relevant traits captured in the Cow and Feeder Advantage index scores
- Sire verification
- Cost \$28

- Genomics enhances selection largely through enhanced accuracy of EPDs earlier in life
- Performance data remains the foundation!!!
- DNA collection will not replace our need for record books, scales, and other measurement tools

