

Bovine Respiratory Disease

Stressors

- -- Castration
- -- Weaning
- -- Commingling
- -- Ration Change
- -- Transport
- -- Dehydration

Pathogen Infection / Proliferation

- -- IBR, BVD, PI3, BRSV
- -- MH, PM, MB, HS
- -- Others?

Environmental Challenge

- -- Commingling
- -- Sick calf shedders
- -- Weather

Decreased pulmonary immune defenses / Pathogen proliferation

Bronchopneumonia (BRD)

Economic and performance consequences associated with the number of treatments for initial individual cases of bovine respiratory disease in commercial feeder cattle

Objective:

- Estimate cost of treating individual calf:
 - Never(0X)
 - Once (IX)
 - Twice (2X)
 - Three or more times (3or>X)

N. Cernicchiaro, B. White, D. Renter, A. Babcock

2012 Am J Vet Res 74(2):300-309

Data Analysis

- Individual calf performance, health, carcass data
- ▶ 212,867 hd
- **2001-2006**
- Economic models:
 - Standardized markets, feed costs (10 yr averages)
 - Comparisons based on differences in performance
 - Calculated net returns for each calf

Net Returns by # Tx (fall only)

BRD: Data based evaluation

1. Refined classification of BRD events

- a) Individual animal diagnosis
- b) Pen-Level Events: Magnitude and Temporal

2. Managing BRD

BRD in individuals

- ▶ Find the sick calf
 - Clinical diagnosis

Disease progression

Disease Detection Thresholds

Time -

Subclinical Disease: Iceberg Effect

- Wittum, JAVMA 1996
 - Survey 469 steers: birth to harvest
 - ▶ 35% treated for BRD (78% had lung lesions)
 - ▶ 65% not treated for BRD (68% had lung lesions)
- Schneider et al, JAS 2009
 - ▶ 1,665 calves: BRD Morb = 8.2%, Lung lesions = 62%

- ▶ Reinhardt et al, JAS 2009
 - 21,528 calves with individual performance data
 - Morbidity & lung lesions negatively associated with initial BW, ADG, HCW
 - Avg 0.12 treatments per calf w/ lung lesions (n=269)
 - Avg 0.07 treatments per calf w/out lung lesions (n=6557)

Serial progression of induced Mannheimia haemolytica pneumonia

Objective:

To perform serial evaluations to quantify changes in behavior, physiologic, and pathologic parameters related to disease progression in experimentally induced Mannheimia haemolytica pneumonia calves.

Hanzlicek et al, 2010 AJVR

Conclusions

BRD Induction Model

- Rapid disease progression; all calves displayed clinical signs
- Clinical signs and lung lesions similar in appearance to field BRD cases (smaller lesions than fatal field cases)

Diagnostic Parameters:

- Measured parameters failed to predict level of lung lesions
- Behavior and clinical scores useful

Effect of Mannheimia haemolytica pneumonia on behavior and physiologic responses of calves experiencing hyperthermal environmental conditions.

Objectives:

- Determine effects of inducing BRD (Mannheimia) in high ambient temperatures
 - Body temperature
 - Behavior
 - Inflammatory profile

M.E. Theurer, D.E. Anderson, B.J. White, M.D. Miesner, D.A. Mosier, J.F. Coetzee, J. Lakritz, D.E. Amrine.

2013 J Anim Sci. 91:1-13.

Mannheimia challenge

- Conducted during high ambient temperatures (July)
- ▶ 18 heifers randomly assigned to either Mannheimia haemolytica (n=10) or Control (n=8) group
- Calves were group housed for 10 days after challenged
- Directed endoscopic challenge: accessory bronchus

% of MH calves sick (CIS 2) by Trial Day

Rectal temperature: first 24 hours

Rectal temperature by trial day

Percent time calves spent lying down

% Time spent within 1 foot of grain bunk

Summary

- Rectal temperatures in MH calves extremely high early
- Few clinical signs of BRD; lung lesions mild
- ▶ MH calves spent more time lying down, less time at grain
- MH calves had an initial shrink in body weight

Behavior following *Mycoplasma bovis* challenge in calves

- B. White, D. Anderson, D. Mosier, D. Renter, R. Larson, L. Kelly,
- B. Robert, M. Theurer

2012 AJVR

Research sponsored by CEVA Biomune

Behavioral Observations

- Calves equipped with a Ubisense ear tag to monitor behavior and activity during the trial
- Monitored to see if activity level is an indicator of illness
- Looked at calves proximity to water, feed, and shed

Clinical illness scores

Distance Traveled

Comparison to Clinical Illness Scores

Distance traveled and lung score

Significant interaction: LS by trial day

Diagnostic Accuracy of BRD Event Identification

- No perfect method to defining "cases"
- Low specificity -> treat unnecessarily
- Low sensitivity -> miss cases; resulting performance low
- Prevention key to limiting losses

BRD: Data based evaluation

1. Refined classification of BRD events

- a) Individual animal diagnosis
- b) Pen-Level Events: Magnitude and Temporal
- 2. Managing BRD

Pen-level BRD Events

- Magnitude influences interventions
- Performance impact influences interventions
- ▶ Irsik et al. 2006 Bovine Practitioner
 - ▶ Feed conversion: Increase 0.27 lb for each % death loss
 - ▶ Average Daily Gain: Decrease 0.08 lb for each % death loss
 - ▶ Added costs: Increase \$1/hd for each % death loss
 - Mortality: Estimate by multiplying percent treated by 0.14

Risk Classification

Lot Level Risk factors

- Transportation characteristics
 - Distance traveled: entire period BRD morbidity / mortality
 - Cernicchiaro et al. J ANIM SCI 2012, 90:1929-1939
 - Shrink: increased BRD incidence / performance losses
 - Cernicchiaro et al. J ANIM SCI 2012, 90:1940-1947
- Weather conditions influence BRD risk
 - Max wind speed, mean wind chill, temperature change
 - Cernicchiaro et al J ANIM SCI 2012, 90:1328-1337

Lot-level cumulative morbidity risk

Lot-level cumulative morbidity risk

Cumulative Morbidity Risk (all causes)

Population Dynamics

Morbidity evaluation by lot

Population Diagnosis

Example data:

- ▶ 40% morbidity
- Calves, 1st 45 DOF

Differences by:

- Population
- Etiologic Agent

Summary

- Individual BRD Events
 - Costly
 - Challenging to accurately diagnose
 - Prevention important
- Lot-level BRD events
 - Economically important
 - Known, preventable risk factors

