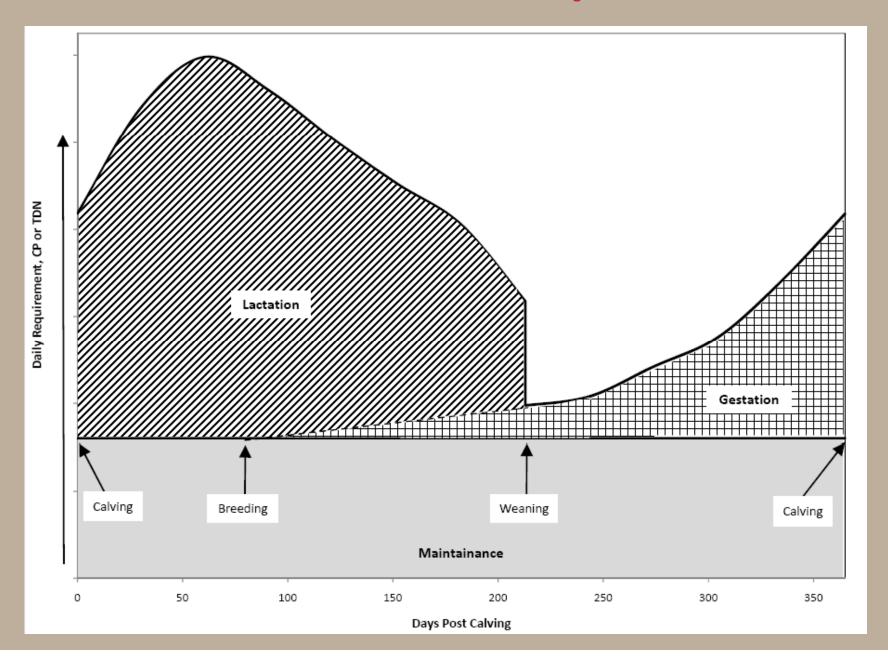
Utilizing Byproducts for Beef Cattle

Lawton Stewart, Ph.D. Extension Animal Scientist The University of Georgia

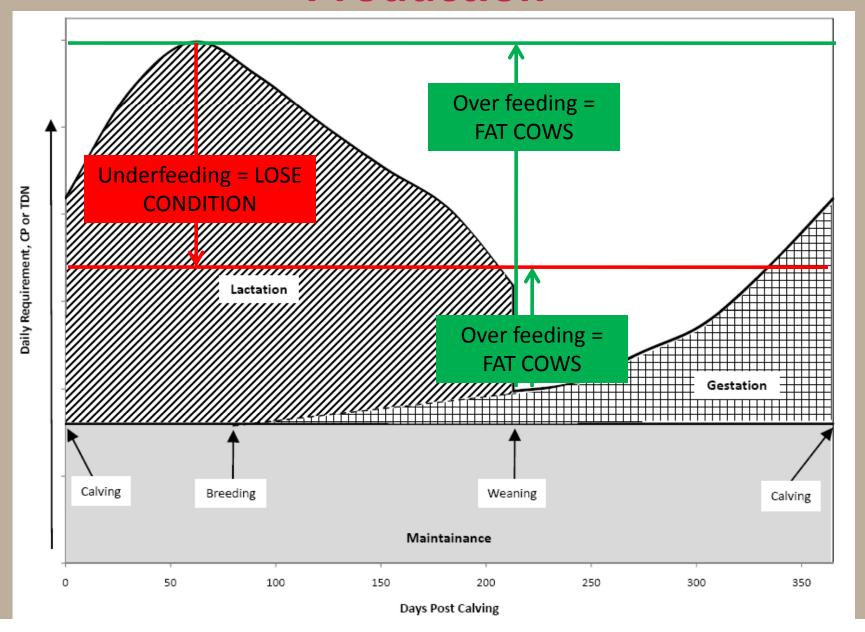
Developing a Feeding Strategy

- 1. Understand your production system
 - Fall Calving
 - Spring Calving
 - Continuous
- 2. Understand your forage system
 - Pasture
 - Conserved forage
- 3. Develop an economical supplement

Reproductive Efficiency

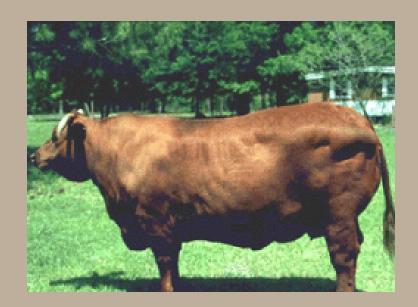

- The most important factor affecting profitability
- Highly dependent on proper nutrition

Nutrient Priorities


- 1. Maintenance
- 2. Growth (Steers & Heifers)
- 3. Lactation
- 4. Reproduction

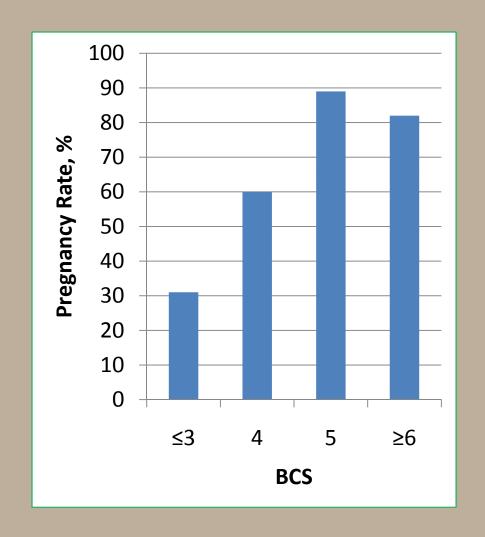
Brood Cow Nutrient Requirements

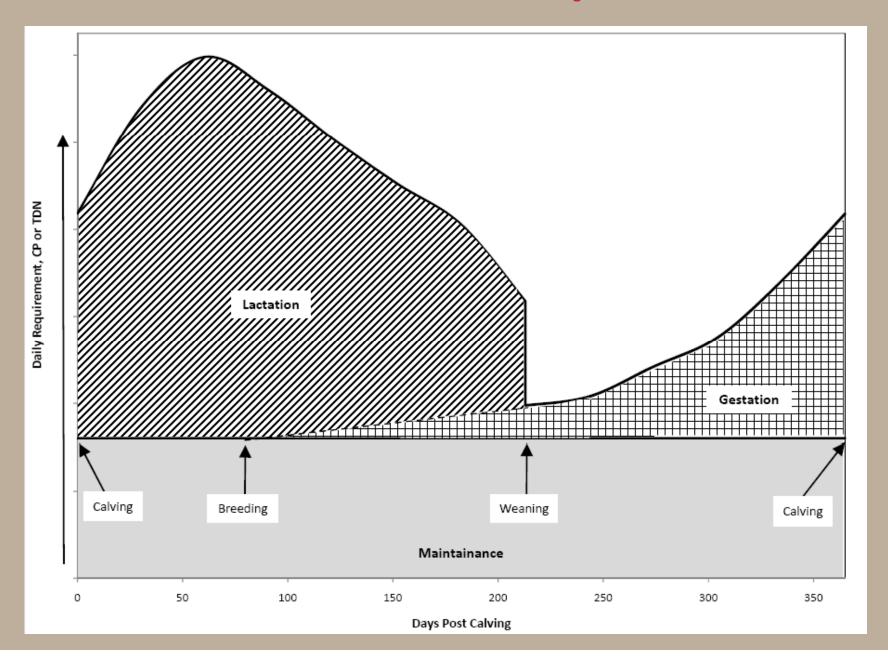
Separate Cows Based on Stage of Production



Body Condition Scoring???

• 1-9 – Assess the energy reserve status of a cow.




Body Condition Scoring???

Brood Cow Nutrient Requirements

Available Forages

- Stockpiled Fescue
- Corn Silage
- Hay produced
 - Storage
 - Testing
 - Inventory

Hay Cutting

- 1. CP 14% TDN 60%
- 2. CP 10% TDN 55%
- 3. CP 6% TDN 47%

TEST FORAGES!!!!

Byproduct Feeding

- What's available
- Price
 - Evaluate on DM basis
 - Look at \$/nutrient
- Handling / Storage
- Minerals

Potential Byproducts

1. Grain

- Corn gluten feed
- Distiller's grains
- Soy Hulls
- Wheat middlings

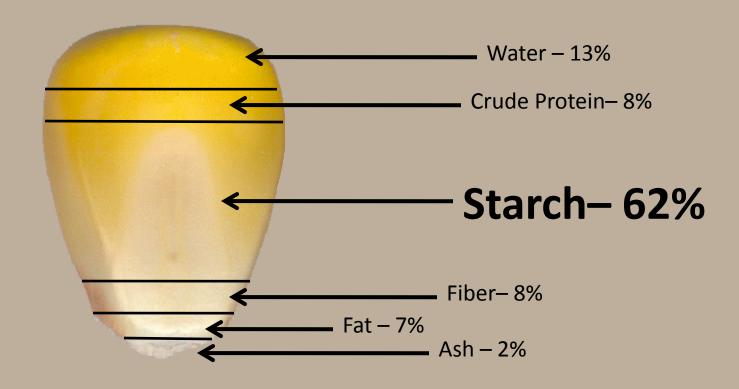
2. Cotton

- Whole seed
- Gin trash
- Hulls

3. Sugar and starch production

- Cane, beet & corn molasses
- Salvage candy

4. Vegetable


Cull vegetables

Corn

- Grain is about 10% CP and 90% TDN
- Can also be high moisture or ground ear corn
- Most popular concentrate
- High starch

Composition of a Corn Kernel

Corn Gluten Feed

- Results from wet milling of corn to produce corn starch, oil and syrup. Probably 6 million tons per year.
- About 24% CP and 80% TDN
- Low Calcium; High Phosphorus
- Low starch
- High sulfur
- LIMIT TO 30% of intake

Distiller's Grains

- Byproduct of ethanol production
- Available:
 - Wet (~47% DM)
 - Dry (~90% DM)
- Very similar to corn gluten feed (个CP, 个TDN, 个P, 个S)
- Higher rumen undegradable protein (bypass protein)

Soybean Meal

- The original byproduct
 - Oil production
- 48-52% CP and 87%TDN
- Utilized in almost all animal production

Wheat

- 105% value of corn
- May pack in stomach if ground too fine
- Generally not over 50% of ration

Wheat Middlings

- Seven million tons of flour by-products available
 - 18% CP, 83% TDN (20 30% starch)
 - Do not store well readily absorbs moisture from the air
- Feed with caution due to the rapidly fermentable starch content
- Low Calcium, High Phosphorus

Whole Cottonseed

- High energy due to oil content
- Excellent source of CP, TDN, and fiber
- Doesn't have to be processed
- Doesn't flow well in feeders; should be fed in troughs

Cottonseed Hulls

- Low TDN and CP
- Good source of roughage
- Doesn't flow

Soy Hulls

- Excellent palatability
- Less starch content than grains; therefore, less negative effect on forage utilization
- Safer, less incidence of founder

Effect of Increasing Corn on Hay Intake and Digestibility

	Corn, Ib	s/day	
None	2.2	4.4	6.6

Hay DMI lbs

Total DMI, Ibs

DOMI, Ibs

Hay OM Digest, %

Oklahoma State, 1987

JAS 65:557

Effect of Increasing Soybean Hulls on Hay Intake

SH, lbs/day

JAS 68:4319

None 2.2 4.4 6.6

Hay, OMI, Ibs

DOMI, Ibs

OM Digestibility, %

Oklahoma State, 1990

Byproduct Feeding

- What's available
- Price
 - Evaluate on DM basis
 - Look at \$/nutrient
- Handling / Storage
- Minerals

Byproduct Pricing

"I can get a ton of wet CGF for \$33 and/or dry pelleted CGF for \$72 a ton. Which one do I get?"

Item	Wet CGF	Dry CGF
Moisture, %	60	10
DM, lb/ton	800	1800
Price, \$/lb DM	0.041	0.040

Byproduct Pricing

<u>Ingredient</u>	<u>\$/ton</u>	<u>% DM</u>	<u>% CP</u>	<u>% TDN</u>	<u>\$/</u>	<u>Ib CP \$</u>	/lb TDN
SBM 48	\$ 350.00	90	48	87	\$	0.405 \$	0.223

\$/ton of nutrient / % DM / % nutrient / 2000 lb = \$/lb of nutrient

A B C D E F G H I

UGA Feed Cost Analyzer

Date 9/23/2009 Farm

3

5

,	THE UNIVERSITY OF GEORGIA
	COOPERATIVE EXTENSION
Ĺ	Colleges of Agricultural and Invironmental Sciences & Family and Consumer Sciences

Dr. Lawton Stewart, Animal and Dairy Science Dr. Curt Lacy, Agriculture and Applied Economics

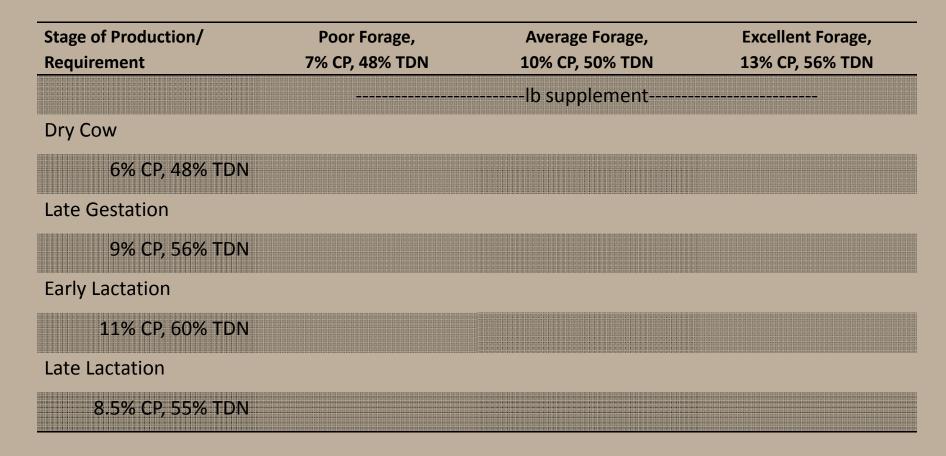
Local Extension Office: 1-800-ASK-UGA1

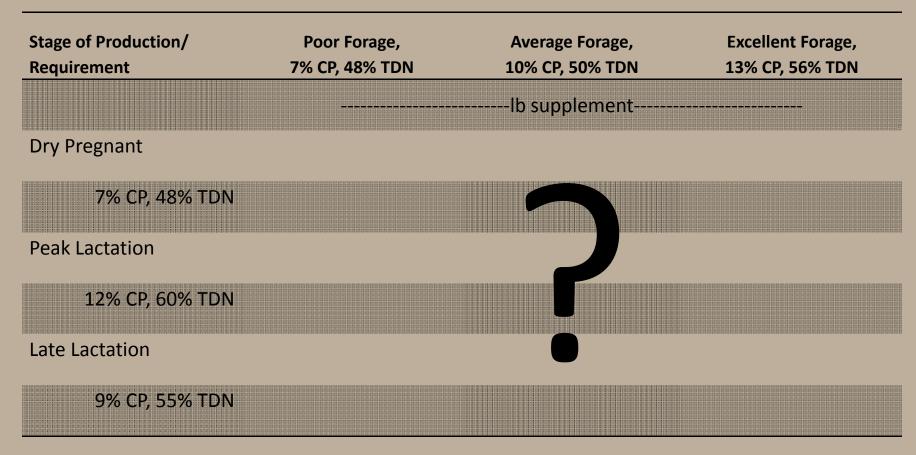
7											
8	<u>Ingredients</u>	<u>\$</u>	<u>/ton</u>	<u>% DM</u>	<u>% СР</u>	% TDN	\$/CWT DM	<u>\$/</u>			Ib TDN
9	Corn	\$	140	90.0	10.0	90.0	7.78	\$	0.778	\$	0.086
10	Corn Gluten Feed	\$	110	90.0	23.0	83.0	6.11	\$	0.266	\$	0.074
11	Corn Silage	\$	50	30.0	8.0	73.0	8.33	\$	1.042	\$	0.114
12	Cottonseed Hulls	\$	195	91.0	4.1	45.0	10.71	\$	2.613	\$	0.238
13	Cottonseed Meal	\$	320	91.0	46.1	78.0	17.58	\$	0.381	\$	0.225
14	Distillers Grain	\$	145	90.0	28.0	95.0	8.06	\$	0.288	\$	0.085
15	Hay, Average	\$	110	90.0	10.0	52.0	6.11	\$	0.611	\$	0.118
16	Hay, Excellent	\$	120	90.0	13.0	58.0	6.67	\$	0.513	\$	0.115
17	Hay, Poor	\$	100	90.0	7.0	48.0	5.56	\$	0.794	\$	0.116
18	Oats	\$	265	88.0	13.3	77.0	15.06	\$	1.132	\$	0.196
19	SBM 48	\$	350	90.0	48.0	87.0	19.44	\$	0.405	\$	0.223
20	Soyhulls	\$	110	91.0	12.1	77.0	6.04	\$	0.500	\$	0.078
21	Wheat Midds	\$	150	91.0	18.4	83.0	8.24	\$	0.448	\$	0.099
22	Wheat Straw	\$	75	90.0	3.5	41.0	4.17	\$	1.190	\$	0.102
23	Whole Cottonseed	\$	235	90.0	23.0	95.0	13.06	\$	0.568	\$	0.137
24	Wheat	\$	235	90.0	12.0	88.0	13.06	\$	1.088	\$	0.148
25	BLANK	\$	999	10.0	1.0	1.0	499.50	\$	499.500	\$ 4	499.500
26	BLANK	\$	999	10.0	1.0	1.0	499.50	\$	499.500	\$ 4	499.500
27	BLANK	\$	999	10.0	1.0	1.0	499.50	\$	499.500	\$ 4	499.500
28	BLANK	\$	999	10.0	1.0	1.0	499.50	\$	499.500	\$ 4	499.500
29	BLANK	\$	999	10.0	1.0	1.0	499.50	\$	499.500	\$ 4	499.500

Byproduct Handling/Storage

Byproduct Minerals

- Supplement Ca to for proper Ca:P ratio
 - Avoid urinary calculi
- Monitor sulfur levels
 - Avoid polioencephalmalacia
 - Cu deficiency
- N and P excretion
 - Environmental impact




How much do I feed?

-50:50 mix of corn gluten feed and soyhulls

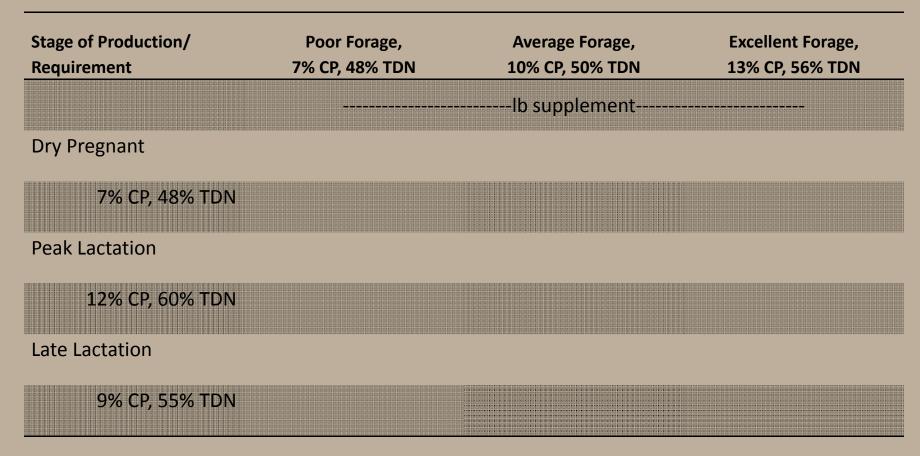
How much do I feed?

-50:50 mix of corn gluten feed and soyhulls

How do I balance my ration?

Balancer Programs:

Taurus (UC Davis)


- \$400
- animalscience.ucdavis.edu/extension/Software/taurus/
- BRANDS (Iowa State Univ.)
 - \$200-475
 - www.iowabeefcenter.org/content/software software brands.html

Evaluator Programs:

- Cattle Grower Ration Balancer (Univ. of Arkansas)
 - www.aragriculture.org/livestock/beef/nutrition/spreadsheets/
- OSUNRC2002 (Oklahoma State Univ.)
 - www.ansi.okstate.edu/software/

CONSULT WITH YOUR COUNTY EXTENSION AGENT BEFORE FEEDING!!!!!

How much do I feed?

-50:50 mix of corn gluten feed and soyhulls

Pre-conditioning

- Preparing calves for the feedlot after weaning
- Spread out the stress of weaning
- Get health records straight
- Feed for 45 days before it is shipped
- Help uniform group
- Goal ADG ~ 2 lb/d

Rations for Preconditioning

500 lb calves to gain 2 lb/d

Available Forage

Average bermuda hay 9% CP, 52 % TDN

Good bermuda hay 12% CP, 57 % TDN

Fall fescue pasture 12% CP, 61 % TDN

Winter annuals 18% CP, 65 % TDN

Rations for Preconditioning

500 lb calves to gain 2 lb/d

Available Forage

Average bermuda hay 9% CP, 52 % TDN

Good bermuda hay 12% CP, 57 % TDN

Fall fescue pasture 12% CP, 61 % TDN

Winter annuals 18% CP, 65 % TDN

REMEMBER FORAGE COST!!!!

More Rations for Preconditioning

500 lb calves to gain 2 lb/d

Available Forage	Forage	90:10 Corn Silage:CGF (\$55/ton)		60:40 Corn:SBM (\$225/ton)		
	\$/ton	lb/hd	\$/hd	lb/hd	\$/hd	
Average bermuda hay 9% CP, 52 % TDN	\$110	23	\$ 0.87	6.5	\$ 1.18	
Good bermuda hay 12% CP, 57 % TDN	\$115	20	\$ 0.88	5.0	\$ 1.14	
Fall fescue pasture 12% CP, 61 % TDN	\$15	16	\$ 0.64	3.5	\$ 0.69	
Winter annuals 18% CP, 65 % TDN	\$20	10	\$ 0.67	1.5	\$ 0.71	

Take Home Message

- Understand changing nutrient needs throughout production cycle.
- Know your forages.
- Use economic strategies when supplementation is needed
- NOT ALL FEEDS ARE CREATED EQUAL

The conference is presented under a grant from the Southern Region Risk Management Education Center with additional support from the University of Tennessee Extension, Virginia Cooperative Extension and North Carolina Cooperative Extension.

